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Abstract  

In this piece of work, we examine and present a completely new discrete family of distributions that we have 

created. Our investigation into the relevant mathematical properties and characterizations of the system makes use 

of both analytical and numerical methods. We focus on a particular member of this family so that we can study its 

theoretical foundations as well as its graphical and numerical representations. This new model contains a few 

different hazard rate functions, some of which are referred to as "increasing constant", "decreasing-constant-

increasing (U)", "constant", "U-constant", "decreasing", and "J-shape" In a similar vein, the model's probability 

mass function provides a variety of forms, all of which are helpful and practical. These forms include "asymmetric 

left skewed," "right skewed with wide peak," "right skewed," "bimodal," "symmetric," and "right skewed," amongst 

others. Each of these forms is valuable and applicable in their own way. These forms might be discovered in the 

probability mass function that the model generates. In this investigation, in addition to the Bayesian estimating 

technique under the traditional loss function of squared errors, we investigate and make use of a total of eight 

estimate strategies that are not founded on Bayesian theory (classical methods). Simulations employing the Markov 

Chain Monte-Carlo method are run for comparing the Bayesian way of estimation with the more traditional 

approach of estimating values. According to the findings that we've compiled, the estimation strategy that is referred 

to as maximum likelihood yields the most accurate results across the board and for all different types of sample 

sizes. In addition, we evaluate and contrast the various methods of estimation by making use of six distinct real 

dataset sets; this indicates the versatility of the unique model that we have developed. 

 

Key Words: Discrete Models; Bayesian estimation; Bootstrapping; Cramér-von-Mises; Discretization; Gibbs 

sampler; Metropolis-Hastings; Markov Chain Monte Carlo; Maximum Likelihood; Statistical Modeling. 

 

1. Introduction 

The discrete probabilistic distributions are fundamental tools in many areas of applied mathematics, engineering, 

computer science, and statistics. These distributions allow us to model a wide range of phenomena, such as the 
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outcomes of random experiments, the behavior of complex systems, and the uncertainty associated with dataset 

analysis. Creating new families of discrete probabilistic distributions that may accurately represent the traits of more 

complex and varied systems has attracted increasing interest in recent years. This interest stems from the realization 

that many real-life problems require more flexible and versatile models than those provided by classical probabilistic  
models such as the Bernoulli, the geometric, the Poisson, the binomial and the negative binomial distributions. The 

development of the new discretized probabilistic distributions is often motivated by the need to simplify or improve 

the estimation process of the underlying parameters, for more details and applications about the zero inflated dataset 

see Bahrami et al. (2012), Bahrami and Ganjali (2014) and Razie et al. (2016).   In many applications of dataset analysis 

and modelling, this is a stage that plays a highly crucial role, and there are several reasons for this, including the 

following: 
One method for achieving these aims is to discretize continuous variables, which will simplify the dataset, making it 

much simpler to interpret and much easier to analyze. The statistical technique of discretization makes it possible to 

find non-linear relationships between various variables. Discretizing either one of the variables or both of them can 

reveal a relationship that is simpler to define, even if just one of the variables is discretized, this may still be the case. 

The dimensionality of the dataset can be decreased with the assistance of discretization, which then results in the 

dataset being easier to see and evaluate. The discretization method can also help in handing outliers by dividing and 

hence dividing them into sone sub-intervals. One reason why new discrete families of probabilistic distributions are 

needed is that many phenomena exhibit non-standard behaviors that cannot be accurately modeled by existing 

distributions. For example, in social network analysis, the degree distribution of the nodes often follows a power law, 

which cannot be captured by classical distributions. In computational biology, the distribution of the number of 

mutations in a DNA sequence may exhibit long tails, which cannot be modeled by the Poisson distribution. Another 

reason why new discrete families of probabilistic distributions are needed is that many applications require 

distributions with specific properties or features. For instance, some applications may require distributions that are 

unimodal, while others may require distributions that are multimodal. Some applications may require distributions 

that are robust to outliers, while others may require distributions that can capture extreme events. Furthermore, new 

discrete families of probabilistic distributions can provide a more efficient and accurate way of modeling and 

analyzing dataset. For example, some new families of distributions may require fewer parameters to fit the dataset or 

have more efficient algorithms for inference and simulation. The new families of distribution can also lead to new 

insights and discoveries in various areas of science and engineering. 

 

Recent research has led to the development of a novel strategy for the generation of a fresh set of discrete distribution 

families. The continuous Gompertz-G (Gz-G) generator was defined and studied by Alizadeh et al. (2017). The 

continuous Gz-G generator had the following survival function (SF): 

𝑆𝛽1,𝛽2
(𝓎) = 𝑒𝑥𝑝 (

𝛽1

𝛽2

{1 − [1 − 𝐺𝓦(𝓎)]
−𝛽2

}) |𝓎∈𝑅,𝛽1,𝛽2>0. 

where 1 − 𝐺𝓦(𝓎) refers to the SF of the baseline model and 𝓦 refers to the parameter vector of the baseline model. 

Following Alizadeh et al. (2017) and Aboraya et al. (2020) defined and studied the discrete Rayleigh-G (DR-G) family 

of distributions based on the continuous Weibull-G family of Bourguignon et al. (2014). In this context, some well-

known examples can be given of some of the distributions that were presented as discrete distributions, see, for 

example, Nakagawa and Osaki (1975) (for a simple discrete version of the Weibull (DW)); Roy (2004) (for a simple 

discrete version of the Rayleigh (DR)); Gomez-Deniz (2010) (for a simple discrete version of the exponential (DE)); 

Jazi et al. (2010) (for a simple discrete version of the inverted Weibull (DINW)); Gommez-Deniz and Calderin-Ojeda 

(2011) (for a simple discrete version of the Lindley (DLN)); Hussaine et al. (2016) (for a simple discrete version of 

the Lindley type II (DLN-II)); Para and Jan (2016) (for a simple discrete version of the loglogistic (DLL)); Para and 

Jan (2016) (for a simple discrete version of the Lomax (DLX)); Para and Jan (2016) (for a simple discrete version of 

the Burr XII (DBTXII)); Krishna and Pundir (2009) (for a simple discrete version of the Pareto (DPAR));  among 

others, and the contributions of scholars in this field are limited to these two main directions. 

 

Based on the Weibull distribution and the generated odd ration argument 𝛻(𝓎|𝛽1, 𝛽2, 𝓦) where 

𝛻(𝓎|𝛽1, 𝛽2, 𝓦) = [�̇�𝓦
−𝛽2(𝓎) − 1]

𝛽1
|𝓎∈𝑅,𝛽1,𝛽2>0, 

where the standard SF of any baseline model if referred by �̇�𝓦(𝓎) = 1 − 𝐺𝓦(𝓎). Recently, Yousof et al. (2018) 

investigated and analyzed a novel probabilistic continuous class called the Weibull generated G (WG-G) family can 

be expressed as  

ℱ𝛼,𝛽1,𝛽2
(𝓎) = 1 − 𝑒𝑥𝑝[−𝛼𝛻(𝓎|𝛽1, 𝛽2, 𝓦)]    |(𝓎∈𝑅 and 𝛼,𝛽1,𝛽2>0),                         (1) 
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where 𝛼 represents the scale parameter of the model and 𝛽1, 𝛽2 represents two additional shape parameters. However 

other useful models can be chosen for discretization like Alizadeh et al. (2018) and Nadarajah et al. (2018), among 

others. In this work, following Yousof et al. (2018), we propose and study a new discrete analogue of the WG-G 

family called the discrete Weibull Generated-G (DWG-G) family. Some simple special members based on the standard 

Weibull (W), the standard inverted Weibull (INW), the standard Lomax (Lx), the standard inverted Lomax (INLx), 

the standard Burr X (BX), the standard inverted Burr X (INBX), the standard loglogistic (LL), the standard inverted 

loglogistic (INLL), the standard Rayleigh (R), the standard inverted Rayleigh (R), the standard exponential (E), the 

standard inverted exponential (INE), the standard Lindley (Li) and the standard inverted Lindley (INLi) distributions 

are discussed theoretically, graphically, and numerically.  

 

Numerous important features are derived, including central moments, cumulant generating functions, probability 

generating functions, ordinary moments, moment generating functions, and dispersion index (DisIx). Cramer-von-

Mises Estimation (CRVME), The ordinary version of the least-square estimation (ORLSE) method, estimation 

Bootstrapping method, maximum of the likelihood estimation (MLKE), estimation method of Kolmogorov (KE), the 

weighted version of least-square estimation (WLSE), method of L-moments, and Anderson Darling 2LD (Left-Tail 

Second Order) Methods are a few non-Bayesian estimation techniques that are taken into consideration. The DWG-G 

family provided a better fit than many well-known competing models according to some criterion like the Akaike 

information criterion (AIC), the Akaike information consistency criterion (CAIC), Chi-square (𝜒𝓦
2 ) (P-value (𝓅𝓋)), 

Kolmogorov-Smirnov (KG-SM) and its corresponding 𝓅𝓋. The following is a discussion of the considerations that 

went into our decision to launch the DGzR-G family: 

I. Constructing a novel probability mass function (PMF) that is capable of taking on a variety of useful PMF 

shapes, including "asymmetric left skewed," "right skewed with wide peak," "right skewed," "bimodal PMF," 

"symmetric PMF," and "right skewed." Several innovative models are presented, each of which has a 

different hazard rate form, such as a "upside down failure rate," a "monotonically decreasing failure rate," a 

"bathtub failure rate," a "monotonically growing failure rate," a "decreasing-constant failure rate," and a 

"constant failure rate with one value. 

II. In order to accurately describe "over-dispersed," "equal-dispersed," and "under-dispersed" real dataset, a 

number of novel discrete models have been proposed. It has been shown that the DWG-G family is more 

effective at modeling many various kinds of dataset, regardless of whether the dataset is symmetric or 

asymmetric or if they contain outliers. This is the case regardless of whether the dataset contains outliers. 

This is still the case even when the dataset is modeled using values at the extreme end of the scale. 

III. Because the results that it produced in the statistical modeling of the dataset were so impressive, it is strongly 

advised that the creative family be utilized in the examination of the bathtub hazard rate count dataset. The 

results that it created were amazing. If the dataset is evaluated correctly, the same core principle can also be 

used to correctly explain dataset suggesting a gradually increasing number of failures; however, this requires 

the dataset to be interpreted correctly. 

IV. The novel G class provided a viable alternative for reproducing zero-inflated dataset (agricultural real-life 

dataset) along with some outliers and a failure rate that was decreasing, increasing, and dropping over time. 

V. Analyzing the differences between the estimate techniques used for the simulated dataset and the count, the 

zero-inflated dataset sets in order to recommend and suggest the most effective course of action for each 

specific scenario. 

VI. The new family, which has a dropping failure rate and only a few outlier observations, can be recommended 

as a plausible statistical choice for managing zero-inflated real-life and count medical datasets. This is 

because the failure rate has been going down. This is due to the fact that the number of extreme cases has 

dropped. 

VII. Actually, we demonstrate that the suggested G family of distributions gives a superior fit for six real dataset 

sets by making use of an experimental method in comparison many extended competing distributions and 

relevant versions that contain three and four parameters. These distributions are in competition with each 

other. 

VIII. The new family can make discrete distributions with two modes. Bimodal distributions can be used to model 

things that are too complicated for a unimodal distribution to properly describe. In the area of genetics, for 

example, bimodal distributions can be used to model how genes with two different ways of being expressed 

are expressed. Bimodal distributions can help people understand the dataset they are looking at better. By 

figuring out what the two modes are, researchers can learn more about what causes the two peaks and how 

they might be linked. Bimodal distributions can also help find outliers or extreme numbers that might be 

hidden in a unimodal distribution. By finding the two modes, researchers can easily find numbers that aren't 
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in the normal range for each mode. Bimodal distributions can help you decide what to do when there are 

more than two possible outcomes. In economics, for example, a bimodal distribution can help people make 

decisions by showing how income or wealth is spread out and what the effects of policy changes might be 

on different income groups. 

IX. The new family can produce discrete distributions with heavy tails. When modeling unusual events that are 

poorly captured by the traditional discrete distributions, heavy-tailed distributions are helpful. For instance, 

heavy-tailed distributions in finance can be used to simulate severe occurrences like market crashes or sharp 

price changes. Compared to existing distributions, heavy-tailed distributions are more resistant to outliers. 

This is due to the fact that they give extreme events a probability that is not zero, which can assist limit the 

impact of extreme outliers on the distribution as a whole. In comparison to current distributions, heavy-tailed 

distributions offer more precise estimates of the tail probability. This is significant for applications like risk 

management where precise tail probability estimations are essential. 

2. The new family 

 With the use of the discretization principle, the recently developed CDF for the new family can be stated as follows 

ℱ𝜳(𝓎) = 1 − 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)   |(𝜋∈𝐼=(0,1) and 𝓎∈N0),                                   (2) 

where 𝜳 = 𝜋, 𝛽1, 𝛽2, 𝓦, 𝛼 = − log(𝜋) and 𝑁0 = 𝑁 ∪ {0}. The following is one formulation of the relevant SF that 

might be possible:  

𝑆𝜳(𝓎) = ℱ̇𝜳(𝓎) = 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)   |(𝜋∈𝐼 and 𝓎∈N0).                                   (3) 

Then, Due to Kemp (2004), the PMF (𝑃𝜳(𝓎)) of the DWG-G family is 

𝑃𝜳(𝓎) = 𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦) − 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)   |(𝜋∈𝐼 and 𝓎∈N0).                            (4) 

For 𝛽 = 2, the novel family reduces to discrete Rayleigh G (DRG) family. For  𝛽1 = 1 , the novel family reduces to 

discrete exponential G (DEG) family. In addition to this, the new hazard rate function (HRF) that corresponds to the 

DWG-G family can be stated as 

𝐻𝜳(𝓎) = 𝑃𝜳(𝓎)/ℱ̇𝜳(𝓎 − 1) =
𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦) − 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)

𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)
. 

For many innovative models, ensuring identifiability is difficult, both theoretically and practically. To demonstrate 

this characteristic as effectively as feasible. For more information on the identifiability of model parameters, please 

see Tabrizi et al. (2020). Several examples of the DWG-G family are presented below for your review. The PMF (4) 

will be most tractable when the baseline model CDF 𝐺𝓦(𝓎) has a simple analytic expression. Here in Table 1, we 

provide some sub-models of this family corresponding to the baseline CDFs W, INW, Lx, INLx, BX, INBX, LL, 

INLL, R, IR, E, IE, Li and INLi distributions. 

 
Table 1: A selection of new models established based on the new DWG-G family. 

Model 𝐺𝓦(𝓎) ∇𝓦
𝛽1,𝛽2(𝓎)|𝓎∈𝑁0

 The new model 

W 1 − 𝑒𝑥𝑝(−𝓎𝜃) [𝑒𝑥𝑝(𝛽2𝓎𝜃) − 1]
𝛽1

|
𝛽1,𝛽2,𝜃>0

 DWGW 

INW 𝑒𝑥𝑝(−𝓎𝜃) 
{[1 − 𝑒𝑥𝑝(−𝓎−𝜃)]

𝛽2
− 1}

𝛽1

|
𝛽1,𝛽2,𝜃>0

 
DWGINW 

R 1 − 𝑒𝑥𝑝(−𝓎2) [𝑒𝑥𝑝(𝛽2𝓎2) − 1]𝛽1|
𝛽1,𝛽2>0

 DWGR 

IR 𝑒𝑥𝑝(−𝓎2) {[1 − 𝑒𝑥𝑝(−𝓎−2)]𝛽2 − 1}
𝛽1

|
𝛽1,𝛽2>0

 DWGIR 

E 1 − 𝑒𝑥𝑝(−𝓎) [𝑒𝑥𝑝(𝛽2𝓎) − 1]𝛽1|
𝛽1,𝛽2>0

 DWGE 

IE 𝑒𝑥𝑝(−𝓎−1) {[1 − 𝑒𝑥𝑝(−𝓎−1)]𝛽2 − 1}
𝛽1

|
𝛽1,𝛽2>0

 DWGIR 

Lx 1 − (1 + 𝓎)−𝜃 [(1 + 𝓎)𝛽2𝜃 − 1]
𝛽1

|
𝛽1,𝛽2,𝜃>0

 DWGLx 

INLx (1 + 𝓎−1)−𝜃 
{[1 − (1 + 𝓎−1)−𝜃]

−𝛽2
− 1}

𝛽1

|
𝛽1,𝛽2,𝜃>0

 
DWGINLx 

BX [1 − 𝑒𝑥𝑝(−𝓎2)]𝜃 ({1 − [1 − 𝑒𝑥𝑝(−𝓎2)]𝜃}
−𝛽2

− 1)|
𝛽2,𝜃>0

 DWGBX 

INBX 1-[1 − 𝑒𝑥𝑝(−𝓎2)]𝜃 ([1 − 𝑒𝑥𝑝(−𝓎−2)]−𝜃𝛽2 − 1)|
𝛽2,𝜃>0

 DWGINBX 

LL 1 − (1 + 𝓎)−1 [(1 + 𝓎)𝛽2 − 1]|
𝛽2>0

 DWGLL 

INLL (𝓎−1 + 1)−1 {[1 − (1 + 𝓎−1)−1]−𝛽2 − 1}
𝛽1

|
𝛽1,𝛽2>0

 DWGINLL 

Li 
1 −

𝜃 + 1 + 𝜃𝓎

𝜃 + 1
𝑒𝑥𝑝(−𝜃𝓎) 

[(
𝜃 + 1 + 𝜃𝓎

𝜃 + 1
)

−𝛽2

𝑒𝑥𝑝(𝛽2𝜃𝓎) − 1]

𝛽1

|

𝛽1,𝛽2,𝜃>0

 

DWGLi 
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ILi 
[1 +

𝜃

(𝜃 + 1)𝓎
] 𝑒𝑥𝑝(−𝜃𝓎−1) 

({1 − [1 +
𝜃

(𝜃 + 1)𝓎
] 𝑒𝑥𝑝(−𝜃𝓎−1)}

−𝛽2

− 1)

𝛽1

|

𝛽1,𝛽2,𝜃>0

 

DWGILi 

 

Consider the standard Weibull probabilistic distribution, then, we have 

𝛻(𝓎|𝛽1, 𝛽2, 𝜃) = [𝑒𝑥𝑝(𝛽2𝓎𝜃) − 1]
𝛽1

|𝛽1,𝛽2,𝜃>0. 

Then, depending on (3), the novel PMF of the new DWGW model is 

𝑃𝜳(𝓎) = 𝜋[𝑒𝑥𝑝(𝛽2𝓎𝜃)−1]
𝛽1

− 𝜋{𝑒𝑥𝑝[𝛽2(𝓎+1)𝜃]−1}
𝛽1

   |(𝓎∈𝑁0,𝜋∈𝐼 and 𝛽1.𝛽2,𝜃>0). 

Clearly, when 𝜃 = 2, the DWGW probabilistic distribution reduces to the DWGR probabilistic distribution and when 

𝜃 = 1 it reduces to the DWGE probabilistic distribution. The novel PMF of the DWGW probabilistic distribution is 

presented in Figure 1 for a few parameter values that were picked at random. In Figure 2, different graphs of the HRF 

of the DWGW probabilistic distribution are displayed for a few parameter values that have been selected.  
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Figure 1: The PMF of the DWGW for a number of well chosen parameter values. 
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Figure 2: The HRF of the DWGW for a number of well-chosen parameter values. 

 

From Figure 1, we can determine that the PMF of the DWGW probabilistic distribution can take on a number of 

advantageous PMF shapes. These shapes include "asymmetric left skewed," "right skewed with wide peak," "right 

skewed," "bimodal PMF," "symmetric PMF," and "right skewed." Other useful PMF shapes include "symmetric PMF" 

and "right skewed." We can see from Figure 2 that the HRF of the DWGW can be any one of the following: 

"increasing-constant," "decreasing-constant-increasing (U-HRF)," "constant," "U- constant," "decreasing," and "J-

HRF." 

 

 

 

 

 

 

3. Major mathematical properties 

3.1 The ordinary moments 

Theorem 1: 

Let 𝓨 be nonnegative random variable (NN-RV), and suppose that 𝓨 ∼ DWG-G (𝚿) family, then the 𝓇𝑡ℎ ordinary 

moment of 𝓨 can be calculated from: 

𝜇𝓇,𝓨
′ = 𝐸(𝓨𝓇) = ∑ 𝛻(𝓎|𝛽1, 𝛽2, 𝓦)

∞

𝓎=1

[𝓎𝓇 − (𝓎 − 1)𝓇]|(𝓎∈𝑁0,𝜋∈𝐼.). 

Proof: Since 

𝜇𝓇,𝓨
′ = 𝐸(𝓎𝓇) = ∑ 𝓎𝓇

∞

𝓎=0

𝑃𝜳(𝓎). 

Then, 

𝜇𝓇,𝓨
′ = ∑ 𝓎𝓇∞

𝓎=0 [ 𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦)

−𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)
] = ∑ [

−(𝓎 − 1)𝓇

+𝓎𝓇 ] ℱ̇𝜳
∞
𝓎=1 (𝓎 − 1) = ∑ 𝜋

𝛻𝓦
𝛽1,𝛽2(𝓎)∞

𝓎=1 [
−(𝓎 − 1)𝓇

+𝓎𝓇 ].   (5) 

Then, using (5), the mean, 𝜇1,𝓨
′  and the second moment can be respectively written as  

𝐸(𝓨) = ∑ 𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦)∞
𝓎=1 , and  𝜇2,𝓨

′ = 𝐸(𝓨2) = ∑ (2𝓎 − 1)∞
𝓎=1 𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦), 

 

3.2 Central moment and DisIx 

The rth central moment of 𝓨, say 𝜇𝓇, follows as  

𝜇𝓇,𝓨 = 𝐸(𝓎 − 𝜇𝓇,𝓨
′ )𝓇 = ∑(−𝜇1,𝓨

′ )
𝑤

𝓇

𝑤=0

(
𝓇
𝑤

) 𝜇(𝓇,𝓨)−𝑤
′ . 

Therefore, the variance (V(𝓨)) can be obtained from   

V(𝓨) = 𝐸(𝓨 − 𝜇𝓇,𝓨
′ )2 =  𝜇 ∑(−𝜇1

′ )𝑤

2

𝑤=0

(
2
𝑤

) 𝜇2−𝑤
′ , 

Or from 

V(𝓨) = 𝜇2,𝓨
′ − 𝜇1,𝓨

2 = 𝜇2,𝓨 = ∑(2𝓎 − 1)𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦)

∞

𝓎=1

− (∑ 𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦)

∞

𝓎=1

)

2

. 

The DisIx or the variance to mean ratio (VMR) of the DWG-G family can derived as  
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DisIx(𝓎) =
∑ (2𝓎 − 1)𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)∞

𝓎=1

∑ 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)∞
𝓎=1  

− ∑ 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)

∞

𝓎=1

. 

3.3 The moment and cumulant generating function (MGF & CGF) 

Theorem 2: 

Let 𝓨 be NN-RV, where 𝓨 ∼ DWG-G(𝜳) family, then the MGF of 𝓨 can be obtained as 

𝑀𝓨(𝑡) = 1 + ∑{𝑒𝑥𝑝(𝑡𝓎) − 𝑒𝑥𝑝[𝑡(𝓎 − 1)]}

∞

𝓎=1

𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦). 

Proof: The MGF of our NN-RV 𝓨 can be derived from 𝑀𝓨(𝑡) = ∑ 𝑃𝜳(𝓎)∞
𝓎=0 𝑒𝑥𝑝(𝑡𝓎).  Then, using (3) we have  

𝑀𝓨(𝑡) = ∑ 𝑒𝑥𝑝(𝑡𝓎)∞
𝓎=0 [ 𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦)

−𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)
] = 1 + ∑ {

𝑒𝑥𝑝(𝑡𝓎)

− 𝑒𝑥𝑝[𝑡(𝓎 − 1)]
}∞

𝓎=1 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦).        (6) 

Due to (6) we have 

𝜇𝓇,𝓨
′ = 𝐸(𝓎𝓇) =

𝑑𝓇

𝑑𝑡𝓇
𝑀𝓨(𝑡)|(𝑡=0). 

The logarithm of the MGF can be written as the CGF. Therefore, the rth cumulant, denoted by 𝐾𝓇,𝓨, can be determined 

from 𝐾𝓇,𝓨 =
𝑑𝓇

𝑑𝑡 𝓇 log[𝑀𝓨(𝑡)] |(𝑡=0, and 𝓇=1,2,3,...). The following is an example of how the probability generating 

function (PGNF) can be written: 

𝑃𝓨(𝑠) = 1 + ∑(1 − 1/𝑠)

∞

𝓎=1

𝑠𝓎𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)|(𝓎∈𝑁0,𝜋∈𝐼 and 𝓇=1,2,3,...). 

 

3.4 Numerical analysis 

The parameters E(X), V(X), skewness (S(X)), and kurtosis (K(X)) are used to represent the DWGW distribution in 

Table 2. According to Table 2, it can be seen that the value of E(X) increases when goes up, but it decreases when _1, 

_2, and go up at the same time. This is something that can be observed. The S(X)∈ (-0.364031,∞). Its K(Z) has a 

spread that varies in either direction from 1.001 all the way up to 6.0231026. In accordance with the conventional 

Poisson distribution (Poisson, 1837), the value of DisIx(X) is either less than 0.1 or larger than one or equal to one. 

Consequently, applying the DWGW distribution to model count dataset that is "under-dispersed" or "over-dispersed" 

might be beneficial to the modeling process. 
Table 2: E(X), V(X), S(X) and K(X) of the DWGW distribution. 

π β₁ β₂ θ E(X) V(X) S(X) K(X) DisIx(X) 

0.0001 5 0.5 0.15 1.7×10⁻²⁷ 1.70×10⁻²⁷ 2.45×10⁻¹³ ∞ 1 
0.01    4.11×10⁻¹⁴ 4.11×10⁻¹⁴ 4953981 2.45×10¹³ 1 

0.2    2.1×10⁻⁰⁵ 2.1×10⁻⁰⁵ 218.6625 47814.59 1 
0.4    0.0021679 0.002165 21.44029 461.6198 0.998843 

0.6    0.0331932 0.033058 5.455052 32.51006 0.995921 

0.8    0.2646421 0.285540 2.145748 8.036714 1.078965 
0.99    7.755066 39.26587 1.164480 4.585201 5.063254 

0.999    171.56190 10599.05 0.708147 3.303535 61.77975 

0.9999    4660.7490 3981772 0.231413 2.691724 854.3203 
0.5 0.0001 1.5 1.5 3.496094 12.23946 0.002161 1.000709 3.500897 

 0.01   3.098353 10.99523 0.220869 1.129161 3.548736 

 0.5   0.203511 0.162279 1.477083 3.195794 0.7973982 
 1   0.025766 0.0251017 5.986483 36.83798 0.9742345 

 1.5   0.000224 0.0002235 66.85855 4471.066 0.9997764 

 2.5   5.4×10⁻²⁰ 5.41×10⁻²⁰ ∞ 1.861019 1 
0.25 0.5 0.0001 5 10624.45 7105385 1.153516 3.857263 668.7767 

  0.01  105.7495 710.6219 1.153313 3.857062 6.719860 

  0.1  10.12474 7.187220 1.13423 3.838421 0.709867 
  0.5  1.635884 0.331469 1.328594 3.759675 0.2026237 

  0.75  0.861674 0.119197 2.094995 5.389769 0.1383322 

  0.95  0.732785 0.195811 1.052123 2.106964 0.2672148 
  1  0.6858454 0.215461 0.800750 1.641201 0.3141546 

0.99 1.5 1.5 0.01 762.5819 38615236 34.02323 1300.836 506375 

   0.5 5.020604 6.599397 0.072457 2.460788 1.314463 
   1 1.369589 0.3598386 0.364031 2.329377 0.262735 

   2 0.7799511 0.1716274 1.351509 2.826577 0.220049 

   3 0.2215724 0.1724781 1.340835 2.797839 0.778428 
   4 2.61×10⁻⁰⁹ 2.61×10⁻⁰⁹ 19616.26 38479774 1 
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4. Characterizations of the DWG-G Family 

The difficulty that arises when attempting to describe a distribution is a key component of distribution theory that has 

attracted the focus of a significant number of academics working in the applied sciences. When conducting research 

in these areas, an investigator is frequently curious about identifying whether or not their model follows the suitable 

distribution.  

Proposition 2.1. Let  𝓨: 𝛺 → 𝑁0 be a random variable. The PMF of 𝓨 is (4) if and only if 

𝐸{[𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦) + 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)] | 𝓨 > 𝒰} = 𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦),   𝒰 ∈ 𝑁0.             (7) 

If 𝓨 has PMF (4), then the left-hand side of (7) will be 

[1 − ℱ𝜳(𝒰)]
−1

∑ [𝜋2𝛻(𝓎|𝛽1,𝛽2,𝓦) − 𝜋2𝛻(1+𝓎|𝛽1,𝛽2,𝓦)]

∞

𝓎=𝒰+1

= 𝜋
−𝛻𝓦

𝛽1,𝛽2(𝒰+1)
∑ [𝜋2𝛻(𝓎|𝛽1,𝛽2,𝓦) − 𝜋2𝛻(1+𝓎|𝛽1,𝛽2,𝓦)]

∞

𝓎=𝒰+1

 

= 𝜋−𝛻(1+𝒰;𝛽1,𝛽2,𝓦)𝜋2𝛻(1+𝒰;𝛽1,𝛽2,𝓦)  = 𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦),   𝒰 ∈ 𝑁∗. 
In contrast, in the event that condition (7) is satisfied, then: 

∑ [𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦) + 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)] 𝑃𝜳(𝓎)

∞

𝓎=𝒰+1

= [1 − ℱ𝜳(𝒰)]𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦) 

= [1 − ℱ𝜳(𝒰 + 1) + 𝑃𝜳(𝒰 + 1)]𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦).                                                      (8) 

From (8), we also have 

∑ [𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦) + 𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)] 𝑃𝜳(𝓎)∞
𝓎=𝒰+2 = [1 − ℱ𝜳(𝒰 + 1)]𝜋𝛻(2+𝒰;𝛽1,𝛽2,𝓦).                            (9) 

Now, subtracting (9) from (8), we arrive at 

(1 − ℱ𝜳(𝒰 + 1))[𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦) − 𝜋𝛻(2+𝒰;𝛽1,𝛽2,𝓦)] + 𝜋𝛻(1+𝐾;𝛽1,𝛽2,𝓦)𝑃𝜳(𝒰 + 1) 

= [𝜋𝛻(1+𝐾;𝛽1,𝛽2,𝓦) + 𝜋𝛻(2+𝐾;𝛽1,𝛽2,𝓦)]𝑃𝜳(𝒰 + 1),   

or 

[1 − ℱ𝜳(𝒰 + 1)][𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦) − 𝜋𝛻(2+𝒰;𝛽1,𝛽2,𝓦)] = 𝜋𝛻(2+𝒰;𝛽1,𝛽2,𝓦)𝑃𝜳(𝒰 + 1). 

From the last equality, we have 

ℎℱ𝜳
(𝒰 + 1) =

𝑃𝜳(𝒰 + 1)

1 − ℱ𝜳(𝒰 + 1)
=

𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦)

𝜋𝛻(2+𝒰;𝛽1,𝛽2,𝓦)
− 1, 

which is the hazard function of PMF (4). 

Proposition 2.2.  Let  𝓨: 𝛺 → 𝑁0  be a NN-RV. Then 

ℎℱ𝜳
(𝒰 + 1) − ℎℱ𝜳

(𝒰) = (
𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦)

𝜋𝛻(2+𝒰;𝛽1,𝛽2,𝓦)
) − (

𝜋𝛻(𝒰;𝛽1,𝛽2,𝓦)

𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦)
),                                               (10) 

 𝓨 ∈ 𝑁0 , with the initial condition ℎℱ𝜳
(0) = 𝜋−{[1−𝐺𝓦(1)]−𝛽2−1}

1

− 1. 

Proof. Clearly, if 𝓨 has PMF (4), then (10) holds. Now, if (10) holds, then 

∑ [ℎℱ𝜳
(𝒰 + 1) − ℎℱ𝜳

(𝒰)]

𝓎−1

𝒰=0

= ∑ {(
𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦)

𝜋𝛻(2+𝒰;𝛽1,𝛽2,𝓦)
) − (

𝜋𝛻(𝒰;𝛽1,𝛽2,𝓦)

𝜋𝛻(1+𝒰;𝛽1,𝛽2,𝓦)
)}

𝓎−1

𝒰=0

, 

or 

ℎℱ𝜳
(𝓎) − ℎℱ𝜳

(0) = (𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦)/𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)) −
1

𝜋𝛻(1;𝛽1,𝛽2,𝓦)
, 

also, depending on the following initial condition ℎℱ𝜳
(0) = 𝜋

−𝛻𝓦
𝛽1,𝛽2(1)

− 1, we have 

ℎℱ𝜳
(𝓎) = (

𝜋𝛻(𝓎|𝛽1,𝛽2,𝓦)

𝜋𝛻(1+𝓎|𝛽1,𝛽2,𝓦)
) − 1,  𝒰 ∈ 𝑁0, 

which refers to the failure function that is equivalent to the PMF (4).  

5. Estimation and inference 

5.1 Non-Bayesian estimation methods 

MLKE method 

Let  𝓨1, 𝓨2, … , 𝓨𝓃 be a random sample (RS) which drown from the DWG-G distribution. The log-likelihood function 

for  𝜳  is given by 

ℓ(𝜳) = ∑ ln[𝜋𝛻(𝓎𝓉;𝛽1,𝛽2,𝓦) − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)]

𝓃

𝓉=1

|(𝜋∈𝐼 and 𝓎𝓉∈𝑁0) 
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It may be optimized either via the use of statistical programs or by the resolution of the nonlinear system obtained 

from ℓ(𝜳) by differentiation. The score vector, 𝑈(𝜳) = (𝜕ℓ(𝜳)/𝜕𝜋, 𝜕ℓ(𝜳)/𝜕𝛽2, 𝜕ℓ(𝜳)/𝜕𝓦𝑗)
𝑇

, and 

𝜕ℓ(𝜳)/𝜕𝜋 =
𝛻𝓦

𝛽1,𝛽2(𝓎𝓉)𝜋𝛻(𝓎𝓉 ;𝛽1,𝛽2,𝓦)−1 − 𝛻(1 + 𝓎𝓉; 𝛽1, 𝛽2, 𝓦)𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)−1

𝜋𝛻(𝓎𝓉 ;𝛽1,𝛽2,𝓦) − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)
, 

𝜕ℓ(𝜳)/𝜕𝛽1 =

𝜕𝛻(𝓎𝓉; 𝛽1, 𝛽2, 𝓦)
𝜕𝛽1

𝜋𝛻(𝓎𝓉 ;𝛽1,𝛽2,𝓦) 𝑙𝓃(𝜋) −
𝜕𝛻(1 + 𝓎𝓉; 𝛽1, 𝛽2, 𝓦)

𝜕𝛽1
𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦) 𝑙𝓃(𝜋)

𝜋𝛻(𝓎𝓉 ;𝛽1,𝛽2,𝓦) − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)
, 

𝜕ℓ(𝜳)/𝜕𝛽2 =

𝜕𝛻(𝓎𝓉; 𝛽1, 𝛽2, 𝓦)
𝜕𝛽2

𝜋𝛻(𝓎𝓉 ;𝛽1,𝛽2,𝓦) 𝑙𝓃(𝜋) −
𝜕𝛻(1 + 𝓎𝓉; 𝛽1, 𝛽2, 𝓦)

𝜕𝛽2
𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦) 𝑙𝓃(𝜋)

𝜋𝛻(𝓎𝓉 ;𝛽1,𝛽2,𝓦) − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)
, 

and 

𝜕ℓ(𝜳)/𝜕𝓦𝑗|𝑗 = 1,2, . . , 𝑝 =

𝜕𝛻(𝓎𝓉; 𝛽1, 𝛽2, 𝓦)
𝜕𝓦𝑗

𝜋𝛻(𝓎𝓉;𝛽1,𝛽2,𝓦) 𝑙𝓃(𝜋) −
𝜕𝛻(1 + 𝓎𝓉; 𝛽1, 𝛽2, 𝓦)

𝜕𝓦𝑗
𝜋𝛻(1+𝓎𝓉;𝛽1,𝛽2,𝓦) 𝑙𝓃(𝜋)

𝜋𝛻(𝓎𝓉 ;𝛽1,𝛽2,𝓦) − 𝜋𝛻(1+𝓎𝓉;𝛽1,𝛽2,𝓦)
. 

Setting 0 = 𝜕ℓ(𝜳)/𝜕𝜋 = 𝜕ℓ(𝜳)/𝜕𝛽1 = 𝜕ℓ(𝜳)/𝜕𝛽2 = 𝜕ℓ(𝜳)/𝜕𝓦𝑗 and then by those equations simultaneously we 

obtain the MLKEs. In circumstances such as this one, the Newton-Raphson algorithms are the ones that are utilized 

to carry out the required numerical problem solving. 

 

 

 

 

CRVME method 

The CRVME of the major parameter vector (𝜳) can be calculated via minimizing the following expressions: 

CRVME(𝜳) =
1

12
𝓃−1 + ∑[ℱ𝜳(𝓎𝓉) − 𝓋(𝓉,𝓃)

[1]
]

2
𝓃

𝓉=1

|(𝜋∈𝐼 and 𝓎𝓉∈𝑁0), 

where 𝓋(𝓉,𝓃)
[1]

=
2𝓉−1

2𝓃
 and then CRVME(𝜳) = ∑ [1 − 𝜋

𝛻𝓦
𝛽1,𝛽2(𝓎𝓉+1)

− 𝓋(𝓉,𝓃)
[1]

]
2

𝓃
𝓉=1 . Then, we have: 

∑ 𝐷(𝜋)(𝓎𝓉 + 1, 𝜳) (
1 − 𝜋𝛻(1+𝓎𝓉;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[1] )

𝓃

𝓉=1

= 0, ∑ 𝐷(𝛽1)(𝓎𝓉 + 1, 𝜳) (
1 − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[1] )

𝓃

𝓉=1

= 0, 

∑ 𝐷(𝛽2)(𝓎𝓉 + 1, 𝜳) (
1 − 𝜋𝛻(1+𝓎𝓉;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[1] )𝓃

𝓉=1 = 0,and ∑ 𝐷(𝓦𝑗)(𝓎𝓉 + 1, 𝜳)𝓃
𝓉=1 (

1 − 𝜋𝛻(1+𝓎𝓉;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[1] ) = 0, 

Which should be solved numerically, where 𝐷(𝜋)(𝓎𝓉 + 1, 𝜳) = 𝜕ℱ𝜳(𝓎𝓉)/𝜕𝜋, 𝐷(𝛽1)(𝓎𝓉 + 1, 𝜳) = 𝜕ℱ𝜳(𝓎𝓉)/𝜕𝛽1, 

𝐷(𝛽2)(𝓎𝓉 + 1, 𝜳) = 𝜕ℱ𝜳(𝓎𝓉)/𝜕𝛽2  and  𝐷(𝓦𝑗)(𝓎𝓉 + 1, 𝜳) = 𝜕ℱ𝜳(𝓎𝓉)/𝜕𝓦𝑗 are the first mathematical derivative 

for the CDF of DWG-G distribution WRT 𝜋, 𝛽1, 𝛽2 and 𝓦𝑗 respectively. 

ORLS method 

Let ℱ𝜳(𝓎𝓉) denotes the CDF of DWG-G model and let 𝓎1|𝓃 < 𝓎2|𝓃 < ⋯ < 𝓎𝓃|𝓃 be the 𝓃 ordered RS. The ORLSEs 

are obtained upon minimizing ORLSE(𝜳) = ∑ [ℱ𝜳(𝓎𝓉) − 𝓋(𝓉,𝓃)
[2]

]
2

𝓃
𝓉=1 , then, we have  

ORLSE(𝜳) = ∑[1 − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦) − 𝓋(𝓉,𝓃)
[2]

]
2

𝓃

𝓉=1

, 

where 𝓋(𝓉,𝓃)
[2]

=
𝓉

𝓃+1
. In light of this, in order to obtain the OLSEs, one must first solve the following non-linear 

equations: 

∑ 𝐷(𝜋)(𝓎𝓉 + 1, 𝜳) [
1 − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[2] ]

𝓃

𝓉=1

= 0, ∑ 𝐷(𝛽1)(𝓎𝓉 + 1, 𝜳) [
1 − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[2] ]

𝓃

𝓉=1

= 0, 

∑ 𝐷(𝛽2)(𝓎𝓉 + 1, 𝜳) [
1 − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[2] ]𝓃

𝓉=1 = 0,and ∑ 𝐷(𝓦𝑗)(𝓎𝓉 + 1, 𝜳) [
1 − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[2] ]𝓃

𝓉=1 = 0, 

where 𝐷(𝜋)(𝓎𝓉 + 1, 𝜳), 𝐷(𝛽1)(𝓎𝓉 + 1, 𝜳), 𝐷(𝛽2)(𝓎𝓉 + 1, 𝜳) and 𝐷(𝓦𝑗)(𝓎𝓉 + 1, 𝜳)  defined above. 

WLSE method 
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The WLSE are obtained by minimizing the function WLSE (𝜳)  WRT  𝜋, 𝛽1, 𝛽2 and  𝓦𝑗   

WLSE(𝜳) = ∑ 𝐶(𝓉,𝓃)
[3]

𝓃

𝓉=1

[ℱ𝜳(𝓎𝓉) − 𝓋(𝓉,𝓃)
[2]

]
2

, 

where  𝐶(𝓉,𝓃)
[3]

= [(1 + 𝓃)2(2 + 𝓃)]/[𝓉(1 + 𝓃 − 𝓉)].  The WLSEs are obtained by solving 

0 = ∑ 𝐶(𝓉,𝓃)
[3]

𝓃

𝓉=1

[
1 − 𝜋𝛻(1+𝓎𝓉;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[2] ] 𝐷(𝜋)(𝓎𝓉 + 1, 𝜳),0 = ∑ 𝐶(𝓉,𝓃)

[3]

𝓃

𝓉=1

[
1 − 𝜋𝛻(1+𝓎𝓉 ;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[2] ] 𝐷(𝛽1)(𝓎𝓉 + 1, 𝜳), 

0 = ∑ 𝐶(𝓉,𝓃)
[3]𝓃

𝓉=1 [
1 − 𝜋𝛻(1+𝓎𝓉;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[2] ] 𝐷(𝛽2)(𝓎𝓉 + 1, 𝜳), and 0 = ∑ 𝐶(𝓉,𝓃)

[3]𝓃
𝓉=1 [

1 − 𝜋𝛻(1+𝓎𝓉;𝛽1,𝛽2,𝓦)

−𝓋(𝓉,𝓃)
[2] ] 𝐷(𝓦𝑗)(𝓎𝓉 + 1, 𝜳), 

where 𝐷(𝜋)(𝓎𝓉 + 1, 𝜳), 𝐷(𝛽1)(𝓎𝓉 + 1, 𝜳), 𝐷(𝛽2)(𝓎𝓉 + 1, 𝜳) and  𝐷(𝓦𝑗)(𝓎𝓉 + 1, 𝜳)  defined above. 

Method of L-moments 

The L-moments for the population can be obtained from  

𝒷𝓇 =
1

𝓇
∑ (

𝓇 − 1
𝑚

)

𝓇−1

𝑚=0

(−1)𝑚𝐸(𝓎𝓇−𝑚  :  𝑚)| (𝓇≥1). 

The first four L-moments are given by  

𝒷1(𝜋, 𝛽1, 𝛽2, 𝓦) = 𝐸(𝓎1:1) = 𝜇1
′ = 𝐿1,  𝒷2(𝜋, 𝛽1, 𝛽2, 𝓦) =

1

2
𝐸(𝓎2:2 − 𝓎1:2) =

1

2
(𝜇2:2

′ − 𝜇1:2
′ ) = 𝐿2, 

𝒷3(𝜋, 𝛽1, 𝛽2, 𝓦) =
1

3
𝐸(𝓎3:3 − 2𝓎2:3 + 𝓎1:3) =

1

3
(𝜇3:3

′ − 2𝜇2:3
′ + 𝜇1:3

′ ) = 𝐿3, 

and 

𝒷4(𝜋, 𝛽1, 𝛽2, 𝓦) =
1

4
𝐸(𝓎4:4 − 3𝓎3:4 + 3𝓎2:4 − 𝓎1:4) =

1

4
(𝜇4:4

′ − 3𝜇3:4
′ + 3𝜇2:4

′ − 𝜇1:4
′ ) = 𝐿4, 

where 𝐿𝓉|𝓉 = 1.2.3.4 is the L-moments for the sample. 

KE method 

The Kolmogorov estimates (KEs) of 𝜋, 𝛽1, 𝛽2 and 𝓦𝑗 can be obtained directly by minimizing: 

𝐾 = 𝐾(𝜋, 𝛽1, 𝛽2, 𝓦𝑗) = 𝑚𝑎𝓎

1≤𝓉≤𝓃

{𝓉
1

𝓃
− ℱ𝜳(𝓎𝓉  :  𝓃), ℱ𝜳(𝓎𝓉  :  𝓃) − (𝓉 − 1)

1

𝓃
}. 

Bootstrapping method 

The estimation of unknown parameters of a probabilistic distribution can be accomplished through the use of a 

resampling technique known as bootstrapping. It is a non-parametric method that makes use of the existing dataset in 

order to generate new datasets (which are referred to as bootstrap samples). This is accomplished by randomly 

selecting from the primary dataset while simultaneously replacing some of the samples.  Here's a general outline of 

the bootstrapping method for estimating unknown parameters: 

i. Start with a sample dataset containing observations or measurements from the population of interest. 

ii. Generate multiple bootstrap samples by randomly selecting observations from the original dataset with replacement. 

Each bootstrap sample should have the same size as the original dataset. 

iii. For each bootstrap sample, estimate the unknown parameters of the probabilistic distribution of interest. This can be 

done by applying the desired estimation method (e.g., maximum likelihood estimation, method of moments, etc.) to 

each bootstrap sample. 

iv. Calculate the parameter estimates obtained from all the bootstrap samples. This will give you a distribution of 

parameter estimates. 

v. From the distribution of parameter estimates, calculate the desired confidence intervals. The most common approach 

is to use the percentile method, where the lower and upper percentiles of the distribution (e.g., 2.5% and 97.5%) 

correspond to the lower and upper bounds of the confidence interval, respectively. 

vi. Interpret the estimated parameters and their confidence intervals in the context of the problem at hand. These estimates 

provide information about the uncertainty associated with the parameter estimates. 

We will see how this works in the following Section (see Hesterberg (2011)). 

Left-Tail of the Second Order Anderson Darling method 

The left-tail of the second order Anderson Darling estimates (AD2LEs) cam obtained by minimizing 

AD2LE(𝓦) = 2 ∑ log[ℱ𝜳(𝓎𝓉  :  𝓃)]

𝓃

𝓉=1

+
1

𝓃
∑

2𝓉 − 1

ℱ𝜳(𝓎𝓉  :  𝓃)

𝓃

𝓉=1

. 

Then, the parameter estimates can be obtained by solving the nonlinear equations 
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𝜕[AD2LE(𝓦)]/𝜕𝜋 = 0, 𝜕[AD2LE(𝓦)]/𝜕𝛽1 = 0, 𝜕[AD2LE(𝓦)]/𝜕𝛽2 = 0 

and 

𝜕[AD2LE(𝓦)]/𝜕𝓦𝑗 = 0. 

 

5.2 Bayesian estimation 

Bayesian methods offer several advantages, including the ability to incorporate prior knowledge, handle small sample 

sizes, and provide a flexible framework for modeling complex problems. However, they also require making 

assumptions about the prior distribution and can be computationally intensive, especially for high-dimensional 

problems. In practice, Bayesian estimation often involves numerical methods such as Markov chain Monte Carlo 

(MCMC) techniques or variational inference to approximate the posterior distribution when analytical solutions are 

not available. 

 

Assume the gamma priors of the parameters 𝜋, 𝛽1, 𝛽2 where 

𝑝1;(𝜁1,𝜉1)(𝜋) ∼ beta(𝜁1, 𝜉1), 𝑝2;(𝜁2,𝜉2)(𝛽1) ∼ Gamma(𝜁2, 𝜉2),𝑝3;(𝜁3,𝜉3)(𝛽2) ∼ Gamma(𝜁3, 𝜉3) and 

and assume the uniform prior for 𝓦𝑗 where 

𝑝4;(𝜁4,𝜉4)(𝓦𝑗) ∼ Uniform(𝜁4, 𝜉4), 

The joint prior distribution can be written as  

𝑝(𝜁𝓉 ,𝜉𝓉)(𝜋, 𝛽1, 𝛽2, 𝓦𝑗) =
𝜋𝜁1(1 − 𝜋)𝜉1

(𝜉4 − 𝜁4)𝐵(𝜁1 , 𝜉1)

𝜉2
𝜁2

𝛤(𝜁2)
 𝛽1

𝜁2−1
𝑒𝑥𝑝[−(𝛽1𝜉2)]

𝜉3
𝜁3

𝛤(𝜁3)
 𝛽2

𝜁3−1
𝑒𝑥𝑝[−(𝛽2𝜉3)] 

The posterior distribution can be formulated as 

𝑝 (𝜋, 𝛽1, 𝛽2, 𝓦𝑗|𝓨) ∝ likelihood(𝜳𝑗|𝓨) × 𝜋(𝜁𝓉 ,𝜉𝓉)(𝜋, 𝛽1, 𝛽2, 𝓦𝑗). 

The means of the marginal posteriors of the variables in question are what the Bayesian estimators correspond to when 

the squared error loss function is taken into consideration. Applying the previously outlined formulas to the 

computation procedure will not result in the production of the Bayesian estimates as this is mathematically impossible. 

The calculation based on the numbers has to be carried out in an approximative manner as a result. We strongly advise 

that you make use of Markov chain Monte Carlo (MCMC) methods, in particular the Gibbs sampler and the Metropolis 

Hastings (M-H) approach. Because the conditional posteriors of the parameters cannot be acquired in any standard 

form, it is recommended that a hybrid MCMC be used for pulling samples from the joint posterior of the parameters. 

This is because the conditional posteriors of the parameters cannot be acquired in any standard form. This will make 

it possible to extract the whole conditional posteriors in a much shorter amount of time. One possible formulation of 

the simulation's algorithm is as follows: 

1) Provide the initial values, say 𝜋, 𝛽1, 𝛽2 and 𝓦𝑗 then at 𝓉(th) stage, 

2) Generate 𝜋(𝓉) ∼ π1 (𝜋(𝓉)|𝛽1(𝓉),𝛽2(𝓉),𝓦𝑗(𝓉)
, 𝓨) ;  

3) Generate 𝛽1(𝓉) ∼ π2 (𝛽1(𝓉)|𝜋(𝓉),𝛽2(𝓉),𝓦𝑗(𝓉)
, 𝓨) ;  

4) Generate 𝛽2(𝓉) ∼ π2 (𝛽2(𝓉)|𝜋(𝓉),𝛽1(𝓉),𝓦𝑗(𝓉)
, 𝓨) ;  

5) Generate 𝓦𝑗(𝓉) ∼ π3 (𝓦𝑗(𝓉)|𝜋(𝓉),𝛽1(𝓉),𝛽2(𝓉)
, 𝓨) ;  

6) Repeat steps 2 − 5, 𝑀 =  50000 times to obtain the sample of size 𝑀 from the corresponding posteriors of 

interest. Obtain the Bayesian estimates of 𝜋, 𝛽1, 𝛽2 and 𝓦𝑗 using the following formulae. 

π̂  =  
1

𝑀 − 𝑀0
∑ 𝜋[𝓱]

𝑀

𝓱 = 1+𝑀0

, �̂�1  =  
1

𝑀 − 𝑀0
∑ 𝛽1

[𝓱]

𝑀

𝓱 = 1+𝑀0

, �̂�2  =  
1

𝑀 − 𝑀0
∑ 𝛽2

[𝓱]

𝑀

𝓱 = 1+𝑀0

, 𝓦𝑗  =  
1

𝑀 − 𝑀0
∑ 𝓦𝑗

[𝓱]

𝑀

𝓱 = 1+𝑀0

 

respectively, where 𝑀0(≈ 50000). 

 

6. Simulations 

The MCMC simulation is of great importance due to its ability to handle complex probabilistic distributions, facilitate 

Bayesian inference, provide flexibility in model formulation, quantify uncertainty, handle intractable integrals, explore 

posterior distributions, and offer computational efficiency. These features make MCMC an invaluable tool in a wide 

range of fields, including statistics, machine learning, computational biology, physics, and many more. This 

assessment is performed under the criteria of mean squared errors (MSEs). First, we generated 1000 samples of the 

DWGE distribution, where n1=50, n2=100, n3=200, n4=300. The MSEs are provided in Tables 3, 4 and 5. Based on 

Tables 3, 4 and 5 we note that, generally, the method of the MLKE is recommended as the best estimations for all 
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sample sizes with the minimum values for the MSEs, however, one can conclude that the general performance of all 

estimation methods improves when the sample size increases. 

Table 3: MSEs where π= 0:6; β₁ = 0:4; β₂ = 1:5; θ= 0:9. 

n  MLKE ORLS WLS CRVM Bayes Moment KE bootstarp AD2LE 

50 π 0.00212 0.00282 0.00312 0.00261 0.00311 0.00346 0.00225 0.00331 0.00290 

 θ 0.00267 0.02421 0.01674 0.02121 0.01600 0.00410 0.00801 0.01170 0.02280 

 β1 0.00219 0.00919 0.01140 0.00754 0.00383 0.00343 0.00496 0.00332 0.00973 

 β2 0.00301 0.07821 0.08989 0.06734 0.04432 0.00533 0.04695 0.02094 0.08321 

           

100 π 0.00107 0.00137 0.00174 0.00151 0.00173 0.00162 0.00109 0.00109 0.00169 

 θ 0.00125 0.01043 0.00640 0.01004 0.00323 0.00180 0.00421 0.00367 0.01114 

 β1 0.00109 0.00354 0.00678 0.00393 0.00102 0.00160 0.00228 0.00258 0.00548 

 β2 0.00146 0.03405 0.05289 0.03727 0.01432 0.00211 0.02212 0.00481 0.04810 

           

200 π 0.00050 0.00066 0.00082 0.00068 0.00054 0.00084 0.00057 0.00097 0.00075 

 θ 0.00053 0.00461 0.00238 0.00464 0.00154 0.00089 0.00202 0.00107 0.00530 

 β1 0.00050 0.00151 0.00357 0.00154 0.00041 0.00084 0.00114 0.00079 0.00233 

 β2 0.00058 0.01564 0.02701 0.01599 0.00533 0.00098 0.01112 0.00382 0.02113 

           

300 π 0.00031 0.00044 0.00056 0.00043 0.00033 0.00049 0.00036 0.00074 0.00047 

 θ 0.00031 0.00313 0.00119 0.00290 0.00129 0.00050 0.00137 0.00088 0.00335 

 β1 0.00031 0.00098 0.00256 0.00093 0.00034 0.00049 0.00075 0.00066 0.00143 

 β2 0.00032 0.01035 0.01919 0.00992 0.00450 0.00051 0.00727 0.00352 0.01329 

 

 

 

Table 4: MSEs where π= 0:7; β₁ = 0:7; β₂ = 1:8; θ= 0:8. 

n  MLKE ORLS WLS CRVM Bayes Moment KE bootstarp AD2LE 

50 π 0.00171 0.00203 0.00235 0.00214 0.00328 0.00256 0.00177 0.00160 0.00225 

 θ 0.01691 0.21381 0.18406 0.01621 0.05010 0.00564 0.00525 0.01218 0.01628 

 β₁ 0.00188 0.00927 0.01122 0.00950 0.00860 0.00275 0.00715 0.00169 0.01084 

 β2 0.00236 0.03930 0.04706 0.04113 0.03163 0.00389 0.03109 0.00478 0.04589 

           

100 π 0.00076 0.00104 0.00103 0.00096 0.00076 0.00120 0.00089 0.00149 0.00100 

 θ 0.00160 0.03049 0.02567 0.00926 0.00665 0.00180 0.00241 0.00165 0.00929 

 β₁ 0.00080 0.00483 0.00540 0.00439 0.00194 0.00123 0.00359 0.00130 0.00507 

 β2 0.00091 0.02043 0.02194 0.01889 0.01196 0.00140 0.01572 0.00233 0.02103 

           

200 π 0.00037 0.00050 0.00054 0.00050 0.00039 0.00055 0.00041 0.00106 0.00052 

 θ 0.00045 0.00475 0.00395 0.00427 0.00628 0.00072 0.00104 0.00065 0.00428 

 β₁ 0.00038 0.00237 0.00302 0.00237 0.00152 0.00056 0.00162 0.00096 0.00269 

 β2 0.00039 0.00991 0.01181 0.00996 0.00800 0.00064 0.00716 0.00115 0.01091 

           

300 π 0.00026 0.00034 0.00037 0.00034 0.00027 0.00040 0.00028 0.00024 0.00035 

 θ 0.00033 0.00309 0.00267 0.00309 0.00487 0.00050 0.00070 0.00031 0.00309 

 β₁ 0.00027 0.00164 0.00214 0.00163 0.00084 0.00041 0.00111 0.00024 0.00187 

 β2 0.00030 0.00685 0.00821 0.00688 0.00369 0.00046 0.00491 0.00023 0.00754 

 

Table 5: MSEs where π= 0:1; β₁ = 0:6; β₂ = 0:4; θ= 0:4. 

n  MLKE ORLS WLS CRVM Bayes Moment KE bootstarp AD2LE 

50 π 0.00125 0.00151 0.00147 0.00168 0.00540 0.01144 0.00131 0.00347 0.00173 

 θ 0.00234 0.05010 0.04077 0.02830 0.00319 0.01680 0.01064 0.00379 0.02968 

 β₁ 0.00133 0.06563 0.05237 0.06550 0.01562 0.18678 0.04753 0.00863 0.06565 

 β2 0.00166 0.01053 0.01049 0.00883 0.00680 0.01863 0.00852 0.00506 0.00903 

           

100 π 0.00059 0.00077 0.00077 0.00074 0.00147 0.00952 0.00064 0.00124 0.00076 



Pak.j.stat.oper.res.  Vol.20  No. 4 2024 pp 745-770  DOI: http://dx.doi.org/10.18187/pjsor.v20i4.4616 

 

  
A New Discrete Generator with Mathematical Characterization, Properties, Count Statistical Modeling and Inference with Applications to Reliability, Medicine, Agriculture, and Biology Data 758 

 

 θ 0.00080 0.01666 0.01035 0.01563 0.00239 0.01112 0.00529 0.00100 0.01661 

 β₁ 0.00071 0.03178 0.02601 0.02947 0.00677 0.03043 0.02554 0.00217 0.02957 

 β2 0.00065 0.00464 0.00461 0.00410 0.00329 0.01140 0.00331 0.00186 0.00417 

           

200 π 0.00029 0.00038 0.00039 0.00038 0.00129 0.00837 0.00031 0.00035 0.00039 

 θ 0.00033 0.00634 0.00320 0.00570 0.00184 0.00877 0.00229 0.00046 0.00627 

 β₁ 0.00031 0.01545 0.01336 0.01537 0.00546 0.01023 0.01137 0.00149 0.01544 

 β2 0.00030 0.00217 0.00223 0.00218 0.00300 0.00845 0.00151 0.00036 0.00222 

           

300 π 0.00019 0.00025 0.00026 0.00026 0.00037 0.00409 0.00021 0.00026 0.00026 

 θ 0.00023 0.00414 0.00180 0.00332 0.00098 0.00422 0.00152 0.00024 0.00367 

 β₁ 0.00023 0.01014 0.00896 0.01020 0.00525 0.00408 0.00774 0.00113 0.01024 

 β2 0.00021 0.00145 0.00149 0.00138 0.00270 0.00408 0.00103 0.00033 0.00141 

 

7. Comparing methods under reliability, medicine, agriculture real-count datasets 

This Section presents four real dataset applications under the discrete family. Two applications are allocated for 

modeling the real-count dataset and two are allocated for modeling the real-zero-inflated dataset. Count datasets arise 

in a variety of fields, including ecology, finance, epidemiology, and social sciences. Modeling count dataset is essential 

for understanding the relationships between the response variable and its predictors and for making accurate 

predictions. Modeling zero-inflated dataset is important for understanding the unique characteristics of dataset with 

an excessive number of zeros. Standard discretization methods may not be appropriate for zero-inflated dataset, so 

specialized models such as the zero-inflated model and the hurdle model should be used instead. These models allow 

for the estimation of the probability of excess zeros and the parameters of the count distribution and provide a more 

accurate representation of the dataset and better predictions. 

7.1 Time to failures dataset of 50 devices 

Count time to failure dataset refers to dataset where the variable of interest is the number of failures or events that 

occur within a specific time period. This type of dataset can be modeled using discrete probabilistic distributions, 

which are appropriate for counting dataset because they can only take on integer values. In this study, the dataset 

consists of the time to failures of 50 devices, measured in weeks, during a life test. The dataset has been analyzed by 

Bodhisuwan and Sangpoom (2016). Table 6 presents the estimates obtained using Bayesian and non-Bayesian 

estimation methods, as well as the KG-SM and 𝓹𝓿 statistics for the time to failure dataset. From the results in Table 

6, it appears that the ORLSE method is the most suitable, as it yields a KG-SM value of 0.11806 and a 𝓹𝓿 value of 

0.48873. 

 

7.2 Time to failures of 15 electronic components 

This lifetime dataset describes the time to failures for 15 electronic components during an acceleration lifespan test 

(for detailed information, see Lawless et al. (2003)). The table that follows (Table 7) contains estimates for the dataset 

pertaining to electronic components. These estimates are presented in the form of KG-SM and 𝓹𝓿 statistics, as well 

as Bayesian and non-Bayesian estimating methods. The KE technique, which has KG-SM equal to 0.09438 and 𝓹𝓿 

equal to 0.99933, is a candidate for the title of "best method" based on the dataset presented in Table 7. 

 

7.3 Counts of cysts of kidneys 

The dataset referred to as cysts of kidneys are dataset in which the response variable is the number of cysts that were 

observed in the kidneys of persons. Because the dataset on cysts of the kidneys is count dataset, discrete probabilistic 

distributions can be utilized in order to describe them. The Poisson distribution and the negative binomial distribution 

are two examples of discrete probabilistic distributions that are frequently utilized in situations like this one. This 

dataset depicts the counts of cysts of corticosteroid-induced kidneys that are dysmorphogenetic. These cysts are 

connected with the dysregulated expression of recognized cytogenic molecules as well as Indian hedgehog (for more 

information, see Chan et al. (2009)). In Table 8, the estimates for the renal dataset are presented using both Bayesian 

and non-Bayesian estimation methods, as well as KG-SM and 𝓹𝓿 statistics. According to Table 8, the MLKE 

technique with KG-SM equal to 0.14998 and 𝓹𝓿 equal to 0.69855 is a contender for the title of "best method" 

 

7.4 Agricultural real-life data 

These numbers indicate the total number of European corn-borer larvae parasites that were found in the field (for 

further information, see Bebington et al. (2012)). Dataset in which the response variable is the count of parasites that 

attack European corn-borer larvae are referred to as the number of parasites that attack European corn-borer larvae in 



Pak.j.stat.oper.res.  Vol.20  No. 4 2024 pp 745-770  DOI: http://dx.doi.org/10.18187/pjsor.v20i4.4616 

 

  
A New Discrete Generator with Mathematical Characterization, Properties, Count Statistical Modeling and Inference with Applications to Reliability, Medicine, Agriculture, and Biology Data 759 

 

this article. Given that these are count dataset, modeling them with discrete probabilistic distributions is a viable 

option. In Table 9, the estimates for corn-borer larvae parasites dataset are shown under both Bayesian and non-

Bayesian estimation methods, as well as KG-SM and p-v statistics. Table 9 shows that the CRVM approach, which 

has KG-SM equal to 0.96028 and 𝓅𝓋 equal to 0.32712, is one of the options for the best method. 

Table 6: Estimates, KS and 𝓅𝓋 for time to failures of devices. 

 π β₁ β₂ θ KS 𝓅𝓋 

MLKE 0.6157767958 0.1573461107 0.0000033379 3.3596325474 0.13897 0.28903 

ORLS 0.679365447 0.1855967179 0.0019523474 1.8995243873 0.11806 0.48873 

WLS 0.6771246495 0.2658284792 0.0002002012 2.3648433070 0.17369 0.09787 

CRVM 0.7607090861 0.2176200131 0.0224293761 1.3501642340 0.12500 0.41534 

Bayesian 0.6793513549 0.2033032537 0.0019338520 1.9160176137 0.17835 0.08309 

Moment 0.6974733370 0.1149606951 0.0011362417 2.1459628209 0.15566 0.17720 

KE 0.0231135581 1.3951239157 0.0127164259 0.8093524699 0.15531 0.17913 

Bootst. 0.6070316325 0.1612146631 0.000001858 3.5075336967 0.17834 0.08313 

AD2LE 0.5278679339 0.1852968998 0.0000078247 3.0520756022 0.11875 0.48115 

  

 

 

 

 

 

Table 7: Estimates, KS and 𝓅𝓋 for time to failures of electronic components. 

 π β₁ β₂ θ KS 𝓅𝓋 

MLKE 0.2439934193 0.2498029795 0.0000000379 4.3903617382 0.12316 0.97679 

ORLS 0.0649000184 0.7318675329 0.0013791993 1.5001317839 0.11844 0.98447 

WLS 0.1346212203 0.6583027489 0.0011088261 1.5916908457 0.10994 0.99347 

CRVM 0.0468066652 0.7608445569 0.0011511311 1.4914083278 0.10217 0.99760 

Bayesian 0.2364811243 0.2654651850 0.0000000381 4.3382582127 0.14656 0.90404 

Moment 0.2574440612 0.4399775046 0.0001062774 2.3533843673 0.10728 0.99525 

KE 0.0549459793 0.6288539228 0.0003673616 1.7683089416 0.09438 0.99933 

Bootst 0.2315123465 0.2867285737 0.0000000419 4.3917475644 0.139095 0.93369 

AD2LE 0.0317952805 0.9419816263 0.0025303378 1.3227447796 0.10883 0.99427 

 

Table 8: Estimates, KS and 𝓅𝓋 for kidneys dataset. 

 π β₁ β₂ θ KS 𝓅𝓋 

MLKE 0.538286604 0.720153555 0.9688003235 0.435380284 0.14998 0.69855 

ORLS 0.3044313503 1.0823722268 0.5688744335 0.3691428485 0.38825 0.53322 

WLS 0.2062488312 0.7551061653 0.3880181575 0.5833695645 0.40767 0.52315 

CRVM 0.3230639855 0.8877792048 0.5624569251 0.4406811894 0.25131 0.61615 

Bayesian 0.4940295209 0.7036908397 0.9299949144 0.4389761409 0.6233 0.42982 

Moment 0.0419180687 0.0975614653 0.0000018545 5.9974151455 0.54497 0.46038 

KE 0.3520133743 0.9075204667 0.4982888878 0.4406811894 2.91018 0.08802 

Bootst 0.1867694728 0.6471461723 0.3760235405 0.6636048898 2.13569 0.14391 

AD2LE 0.3529607368 1.3428936378 0.6324668229 0.2900647784 0.38277 0.53612 

 

Table 9: Estimates, KS and 𝓅𝓋 for corn-borer larvae parasites dataset. 

 π β₁ β₂ θ KS 𝓅𝓋 

MLKE 0.0468873711 5.5470002735 0.538697811 0.1462873188 1.08781 0.29696 

ORLS 0.0265674121 4.6718916679 0.4957373562 0.1888898179 1.05235 0.30497 

WLS 0.0982814922 4.8131560409 0.5361854384 0.1768047825 0.96028 0.32712 

CRVM 0.0211054595 4.9425178858 0.4994558176 0.1783063213 0.97728 0.32287 

Bayesian 0.0580677884 5.3511844765 0.5370877054 0.146794422 1.77406 0.18288 

Moment 0.0100595854 0.1729227865 0.0000023539 5.9885425122 1.35159 0.24500 

KE 0.0175309812 0.4721164303 0.0655919866 0.0099672330 1463.00 <0.0001 

Bootst. 0.0768506047 5.2742164412 0.5404704993 0.1606818352 119.542 <0.0001 
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AD2LE 0.026674495 4.9348095934 0.502307644 0.1849002612 1.34243 0.24661 

 

8. Comparing discrete models under reliability, medicine, agriculture real-count datasets 

We illustrate the adaptability of the DWGE and DWGW distributions by using four distinct applications from the real 

world, and we also discuss the significance of these distributions. The log-likelihood function, AIC, CAIC, 𝜒𝒱
2  with 

degree of freedom (d.f), KG-SM, and its 𝓅𝓋 are the approaches that are used in the process of analyzing and comparing 

the fitted distributions (see Table 10). Table 8 provides a rundown of the various offerings made by the rival 

companies. 

Table 10: The competitive models. 

Discrete distribution Abbreviation 

Standard exponential, Standard Weibull and Standard Rayleigh DE, DW and DR 

Standard negative binomial (Dougherty (1992)) NB 

Standard inverted Rayleigh DINR 

Standard inverted Weibull DINW 

Standard Lindley and Standard Poisson DLN and Poisson 

Standard Lindley of the second type DLN-II 

Standard loglogistic, Standard Lomax and Standard Pareto DLL, DLX and DPAR 

Standard Burr of the type XII  DBTXII 

Standard exponentiated Weibull EDW 

Standard exponentiated Lindley EDLN 

discrete generated exponential of the second type DGEXII 

8.1 Time to failures (times to failure dataset for 50 devices) 

Dataset on count time to failures are dataset sets whose response variable is the number of failures or occurrences of 

an event during a predetermined period of time. These dataset sets are referred to as count time to failures dataset. 

Modeling dataset on count time to failures can be accomplished with the help of discrete probabilistic distributions. 

Discrete distributions are suitable for counting dataset since they can only take on integer values. This makes them 

more precise. As a result of the findings of Bebbington et al. (2012), we evaluate the fits of the DWGW distribution 

in comparison to those of a number of other models, including EDW, DW, DINW, DLN-II, EDLN, DLL, and DPAR. 

The box graph, the quantile-quantile graph, and the total time in test graph for the time to failures dataset are presented 

in Figure 3. Table 11 contains a listing of the MLKEs as well as the standard errors (SEs). Tables 12 contain a listing 

of the statistics on the test's appropriateness. According to Table 12, the DWGW offers the best fits in comparison to 

all other competitor models, with a value of -ℓ equal to 219.452, an AIC equal to 446.905, a CAIC equal to 447.794, 

KG-SM equal to 0.13897, and 𝓅𝓋 equal to 0.28903. The estimated HRF (EHRF), the estimated SF (ESF) or the 

Kaplan-Meier SF, and the Probability-Probability (PR-PR) graphs for time to failures dataset are presented in Figure 

4. 

 

 
Figure 3: Box graph, Q-Q graph and TTT graph for the  time to failures dataset. 

 
      Table 11: MLKEs (SEs) for  time to failures dataset. 

  �̂�  𝛽₁̂  𝛽₂̂ 𝜃 

Model MLKE (SE) MLKE (SE) MLKE (SE) MLKE 

(SE) 

DWGW 0.61582 0.15735 0.00003 3.3596 
 (0.0761) (0.0377) (<0.0001) (0.49523) 

EDW 0.98914 1.13778 0.78474  

 (0.1644) (3.2271) (3.0533)  
DW 0.9809 1.02331   
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 (0.0112) (0.1313)   
DINW 0.01808 0.58211   

 (0.01311) (0.0612)   

DLN-II 0.9692 0.05812   
 (0.0052) (0.0271)   

EDLN 0.97182 0.4802   

 (0.0051) (0.0868)   
DLLc 1.00013 0.43925   

 (0.3246) (0.0624)   

DPAR 0.73924    
 (0.0343)    

 
Table 12: The statistics for the time to failures dataset about the goodness of fit. 

 DWGW EDW DW DINW DLN-II EDLN DLLc DPAR 

-ℓ 219.452 240.212 241.616 261.877 240.631 240.307 294.93 275.882 
AIC 446.905 486.719 487.225 527.824 485.198 484.553 593.88 553.741 

CAIC 447.794 487.204 487.555 528.101 485.455 484.888 594.05 553.885 

KG-SM 0.13897 0.19488 0.18656 0.25777 0.18632 0.19453 0.5354 0.33535 

𝓅𝓋 0.28903 0.04512 0.06111 0.00322 0.06422 0.04525 < 0.0010 < 0.0010 

 

 
Figure 4: The EHRF, ESF and PR-PR graphs for time to failures dataset. 

 

8.2 Time to failures (times to failure dataset for 15 devices) 

Modeling count time to failure dataset using discrete probabilistic distributions is possible; the Poisson distribution 

and the negative binomial distribution are the two that are utilized most frequently in this endeavor. The properties of 

the dataset and the research issue that are being addressed both play a role in the decision on which distribution to 

choose. For the purpose of this application, we evaluate the degree to which the discrete DE, DGEXII, DR, DIR, 

DINW, DLX, DBTXII, and DPAR models match the dataset in comparison to the fits provided by the DWGE and 

DWGW distributions. The MLKEs and SEs are detailed in Tables 13, which may be found here. Tables 14 contain a 

listing of the statistics pertaining to the appropriateness of the exam. According to the results of Table 14, the DWGW 

model offers the best fits in comparison to all other competitive models, with a value of -ℓ equal to 62.958, AIC equal 

to 133.915, CAIC equal to 137.915, KG-SM equal to 0.12315, and 𝓅𝓋 equal to 0.97679. The box graph, the Q-Q 

graph, and the TTT graph for the second time to failures dataset are presented in Figure 5. The EHRF, ESF, and PR-

PR graphs for the second time to failures dataset are presented in Figure 6. 

 
Figure 5: Box graph, Q-Q graph and TTT graph for the second time to failures dataset. 
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Table 13: MLKEs (SEs) for second time to failures dataset. 

  �̂�  𝛽₁̂  𝛽₂̂ 𝜃 

Model MLKE (SE) MLKE (SE) MLKE (SE) MLKE (SE) 

DWGW 0.24399 0.24980 0.000004 4.39036 

 (0.1943) (0.25474) (<0.0001) (4.6153) 

DGEXII 0.95623 1.49121   

 (0.01311) (0.53516)   

DINW 2.21 × 10⁻⁴ 0.87551   

 (7.83 × 10⁻⁴) (0.1644)   

DLX 0.01233 104.514   

 (0.03910) (84.431)   

DBTXII 0.97513 13.3676   

 (0.05132) (27.785)   

DR 0.99952    

 (2.58 × 10⁻⁴)    

DINR 1.82 × 10⁻⁷    

 (0.05553)    

DPAR 0.72034    

 (0.0615)    

DE 0.96532    

 (0.00915)    

 
Table 14: The statistics reflect the degree to which the data fits the second attempt to the failures. 

 DWGW DE DGEXII DR DINR DINW DLX DB-XII DPAR 

-ℓ 62.958 65.011 64.420 66.392 89.095 68.703 65.863 75.724 77.401 

AIC 133.915 134.24 134.83 134.814 180.178 141.441 135.728 155.433 156.887 

CAIC 137.915 136.33 135.82 136.110 180.503 142.436 136.728 156.466 157.136 

KG-SM 0.12315 0.1778 0.1288 0.21615 0.6982 0.20925 0.20506 0.38829 0.4052 

𝓅𝓋 0.97679 0.6731 0.9376 0.43317 < 0.0010 0.48215 0.4905 0.01516 0.00961 

 

 
Figure 6: The EHRF, ESF and PP graphs for second  time to failures dataset. 

 

 

8.3 Counts of cysts of kidneys 

Discrete probabilistic distributions can be used to represent counts of kidney cysts; the Poisson distribution and the 

negative binomial distribution are the two that are utilized the most frequently. The features of the dataset, such as the 

mean and the variance, as well as the research issue that is being addressed, all play a part in determining which 

distribution to choose. When analyzing this particular dataset set, we evaluate the adequacy of the DWGE and DWGW 

distributions in relation to other prevalent statistical models, including the DLX, DW, DLN-II, DINW, DR, DLN, DE, 

and the standard Poisson distributions. The MLKEs and SEs are detailed in Table 15, which may be found here. The 

information regarding the goodness of fit can be seen in table 16. According to Table 16, the DWGW model has the 

best fit when compared to all other competitive models with the following values: −ℓ=166.846, AIC =341.693, CAIC 

=342.074, 𝜒𝒱
2  =0.150, and 𝓅𝓋=0.699. The box graph, the Q-Q graph, and the TTT graph for the kidney’s dataset are 

presented in Figure 7. The EPMF, ESF, EHRF, ECDF, and PP graphs for the kidney’s dataset are presented in Figure 

8. 
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Figure 7: The kidneys dataset includes a box graph, a Q-Q graph, and a TTT graph. 

 
Table 15: MLKEs (SEs) for kidneys dataset. 

  �̂�  𝛽₁̂  𝛽₂̂ 𝜃 

Model MLKE MLKE MLKE MLKE 

DWGW 0.5383 0.72015 0.9688 0.43543 

 (0.3928) (0.54461) (0.8922)  (0.3513) 

DW 0.75032 0.43151   

 (0.0844) (0.3404)   

DINW 0.58135 1.04944   

 (0.0482) (0.146).5   

DLN-II 0.5813 0.00165   

 (0.0457) (0.05842)   

DLX 0.14032 1.83049   

 (0.09839) (0.9516)   

Poi. 1.39024    

 (0.1126)    

DE 0.58124R    

 (0.03036)    

DR 0.901433    

 (0.00883)    

DLN 0.436223    

 (0.02617)    

 
  Table 16: The statistics for the kidney’s dataset about the appropriateness of the fit. 

Z OF DWGW DW DINW DR DEx DLN DLN-II DLX Poi. 

0 65 64.484 59.01 63.91 11.00 46.09 40.25 46.031 61.888 27.421 
1 14 14.583 19.84 20.70 26.83 26.78 29.83 26.771 21.015 38.081 

2 10 8.9816 10.78 8.05 29.55 15.56 18.36 15.560 9.650 26.470 

3 6 6.139 6.260 4.23 22.23 9.04 10.35 9.0452 5.230 12.26 
4 4 4.368 4.190  2.60 12.49 5.25 5.527 5.270 3.173 4.26 

5 2 3.165 2.0115 1.751 5.424 3.05 2.861 3.063 2.062 1.176 

6 2 2.309 1.991 1.259 1.852 1.777 1.400 1.777 1.421 0.272 
7 2 1.688 1.327 0.951 0.500 1.031  0.71 1.0416 1.021 0.050 

8 1 1.231 0.988 0.741 0.111 0.601 0.353 0.6016 0.761 0.010 

9 1 0.893  0.866 0.599 0.0173  0.359 0.1724 0.355 0.577 0.000 
10 1 0.645 0.764 0.468 0.000 0.203 0.087 0.200 0.462 0.000 

11 2 0.462 1.991 4.741 0.000 0.281 0.071 0.282 2.741 0.000 

           
-ℓ  166.846 170.14 172.93 277.78 178.77 189.15 178.85 170.48 246.21 

AIC  341.693 344.28 349.87 557.56 359.53 380.23 361.54 344.96 494.42 

CAIC  342.074 344.39 349.98 557.59 359.57 380.35 361.60 345.07 494.46 
           

𝜒𝒱
2  0.1503 3.1255 6.4636 321.073 22.881 43.483 22.894 3.3165 294.105 

d.f  1 3 3 4 4 4 3 3 4 

𝓅𝓋  0.6993 0.3731 0.0913 <0.0010 0.0010 <0.0010 <0.0010 0.34510 <0.0010 
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Figure 8: The EPMF, ESF, EHRF, ECDF, PP graphs for kidneys dataset. 

 

 

8.4 The number of parasitic European corn borer larvae 

It is possible to simulate the number of parasitic European corn borer larvae using discrete probabilistic distributions. 

The Poisson distribution and the negative binomial distribution are the two that are utilized the most frequently in this 

modeling process. The features of the dataset, such as the mean and the variance, as well as the research issue that is 

being addressed, all play a part in determining which distribution to choose. In the following part, we are going to 

evaluate the DWGW distribution in relation to other popular distribution models such as the DGINW, DINW, 

DBTXII, DIR, DR, NB, and DPAR distributions, as well as the Poisson distribution. The MLKEs and SEs are detailed 

in Tables 17, which may be found here. The information regarding the goodness of fit can be seen in table 18. 

According to Table 18, the DWGW offers the best fits in comparison to all other competitor models, with a value of 

-ℓ equal to 200.438, AIC equal to 408.875, CAIC equal to 409.223, 𝜒𝒱
2  equal to 1.088, and 𝓅𝓋 equal to 0.297. The 

box graph, the Q-Q graph, and the TTT graph for the corn-borer larvae dataset are presented in Figure 7. Graphs of 

the EPMF, ESF, EHRF, ECDF, and PP variables for corn-borer larvae dataset are shown in Figure 8. Figure 9 shows 

the box graph, Q-Q graph and TTT graph for corn-borer larvae dataset. However, Figure 10 gives the EPMF, ESF, 

EHRF, ECDF, PP graphs for corn-borer larvae dataset. 
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Figure 9: Box graph, Q-Q graph and TTT graph for corn-borer larvae dataset. 

 
Table 17: MLKEs (SEs) for corn-borer larvae dataset. 

  �̂�  𝛽₁̂  𝛽₂̂ 𝜃 

Model  MLKE  MLKE  MLKE MLKE 

DWGW 0.0469 5.5470 0.5387 0.1463 

 (0.2321) (3.539)  (0.1376) (0.095) 

DGW 0.04502 2.5395 2.15936 0.4791 
 (0.429) (4.703) (2.6974) (0.465) 

DINW 0.34525 1.5411   

 (0.0433) (0.1561)   
DBTXII 0.51939 2.35815   

 (0.05124) (0.3668)   

DINR 0.3188    
 (0.0423)    

NB 0.87024 9.95611   

 (0.0365) (0.09516)   
DR 0.86733    

 (0.0124e)    

DPAR 0.32915    
 (0.03437)    

Poi 1.483515    

 (0.02515)    

 
Table 18: The goodness of fit statistics for corn-borer larvae dataset. 

Z OF DWGW DINW DBTXII DINR DR NB DPAR Poi 

0 43 45.107 41.37 43.84 38.28 15.933 30.122 64.45 27.22 

1 35 30.082 41.85 39.61 51.90 36.13 38.866 20.16 40.39 
2 17 18.827 15.42 15.62 15.51 34.575 27.611 9.693 29.96 

3 11 11.297 7.170 7.201 6.04 21.023 14.262 5.655 14.83 

4 5 6.567 3.936 3.910 2.913 8.888 5.988 3.678 5.490 
5 4 3.718 2.400 2.371 1.611 2.702 2.171 2.577 1.630 

6 1 2.058 1.614 1.564 0.977 0.600 0.700 1.900 0.400 

7 2 1.116 1.130 1.095 0.638 0.090 0.210 1.460 0.090 
8 2 0.594 5.090 4.807 2.141 0.020 0.060 10.44 0.020 

          

-ℓ  200.438 204.810 204.293 208.440 235.23 211.52 220.63 219.19 
AIC  408.875 413.621 412.587 418.881 472.45 427.05 443.24 440.38 

CAIC  409.223 413.723 412.689 418.915 472.49 427.14 443.27 440.41 
          

𝜒𝒱
2  1.088 5.511 4.664 14.274 70.688 20.367 32.462 38.478 

d.f  1 3 3 4 4 3 4 4 

𝓅𝓋  0.297 0.138 0.198 < 0.0010 < 0.0010 0.0010 < 0.0010 < 0.0010 
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Figure 10: The EPMF, ESF, EHRF, ECDF, PP graphs for corn-borer larvae dataset. 

 

 

9. Application in biological science  

Genetics, a branch of biological science, investigates the mechanisms responsible for both similarities and differences 

within closely related species. The term "genetic" originates from the Greek word "genesis," signifying growth into 

or becoming. Thus, genetics is the examination of heredity and the variations inherent in it. This scientific discipline 

focuses on the transmission of physical traits—both similarities and differences—from parents to offspring, along 

with the laws governing this process. Any disparities among individual organisms or groups within a species, 

stemming from either genetic distinctions or the influence of environmental factors, are termed variations. These 

variations can manifest in diverse aspects such as physical appearance, metabolism, behavior, learning capabilities, 

mental aptitude, and other observable traits. 

 

Recently, Hassan et al. (2020) presented a new discrete distribution with applications to two count biological data sets. 

Figure 11 (the first three plots) gives the Box graph, Q-Q graph and TTT graph for the first count biological dataset. 

Figure 11 (the second three plots) gives the Box graph, Q-Q graph and TTT graph for the second count biological 

dataset. Based on the box plot and the Q-Q plots, it is noted that the two data sets have some extreme values. Based 

on the TTT plot, it is noted that the two data sets have a decreasing HRF.  
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Figure 11: The Box graph, Q-Q graph and TTT graph for the two count biological datasets. 

 

 

Table 19: The MLKEs and the goodness of fit statistics for first count biological data. 
Number of 
Aberrations 

OF Fitted Distribution 

Poi PAD DWGW DRW DWW 

0 268 231.3 246.1 270.876 272.308 272.701 

1 87 126.1 106.1 78.193 74.276 75.34 

2 26 34.7 34.3 29.602 30.688 29.974 

3 9 6.3 9.8 12.068 13.114 12.586 

4 4 0.8 2.6 5.136 5.603 5.379 

5 2 0.1 0.6 2.251 2.367 2.308 

6 1 0.1 0.1 1.009 0.983 0.988 

7+ 3 0.1 0.04 0.46 0.401 0.42 

Total 400 400 400 400 400 400 

𝜒𝒱
2  40.8 10.05 2.4 0.68077 0.68175 

MLKEs  

𝜃=0.55 �̂�=1.82 

�̂� = 0.00051 

𝛽1̂ = 32.892 

𝛽2̂ = 0.66463 

𝜃 = 0.0192 

�̂� = 0.6793 

 

𝜃 = 0.2490 

�̂� = 0.00062 

�̂� = 0.04862 

�̂� = 1.7643 

𝜃 = 0.40002 

𝓅𝓋  < 0.0001 0.018 0.12221 < 0.0001 < 0.0001 

In this application, the new distribution was harnessed within the framework of count biological data modeling, and 

the new distribution was compared with other new competing and important distributions such as the Poisson 

distribution, Poisson Ailamujia distribution, discrete Rayleigh Weibull (DRW) distribution and discrete Weibull-

Weibull (DWW) distribution. Table 19 gives the MLKEs and the goodness of fit statistics for first count biological 

data. Table 20 provides the MLKEs and the goodness of fit statistics for second count biological data. Based on Table 
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19, the DWGW provides the best results with 𝓅𝓋=0.12221. However, Based on Table 20, the DWGW provides the 

best results with 𝓅𝓋=0.13129. 

 

Table 20: The MLKEs and the goodness of fit statistics for second count biological data. 
Number of 

Aberrations 

OF Fitted Distribution 

Poi PAD DWGW DRW DWW 

0 200 172.5 184.6 200.583 199.558 199.357 

1 57 95.4 79.5 59.104 60.215 60.78 

2 30 26.4 25.7 24.341 24.382 24.046 

3 7 7.3 4.9 9.957 9.804 9.686 

4 4 1.9 0.7 3.889 3.823 3.836 

5 0 .5 0.1 1.427 1.436 1.471 

6 2 0.1 0.0 0.487 0.518 0.542 

Total 300 300 300 300 300 300 

𝜒𝒱
2  29.6 9.4 2.27721 0.66519 0.6645 

MLKEs 

 

𝜃=0.55 �̂�=1.82 

�̂� = 0.0731 

𝛽1̂ = 1.1552 

𝛽2̂ = 0.3881 

𝜃 = 0.5924 

�̂� = 0.6903 

 

𝜃 = 0.26603 

�̂� = 0.0006 

�̂� = 0.0846 

�̂� = 1.0359 

𝜃 = 0.7772 

𝓅𝓋  < 0.0001 0.09 0.13129 < 0.0001 < 0.0001 

For illustrating the high fitting of the new model, we present Figure 12 which contains six plots. Figure 12 (the first 

three plots) gives the EPMF, ESF, and PP graphs for the first count biological datasets, Figure 12 (the second three 

plots) gives the EPMF, ESF, and PP graphs for the second count biological datasets.  

 

  
 

  
 

Figure 12: The EPMF, ESF, and PP graphs for two count biological datasets. 
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10. Concluding remarks 

We proposed and investigated a novel discrete family of distributions that we dubbed the discrete Weibull generated 

G (DWG-G) family of distributions in light of the continuous G family that was presented by Yousof et al. (2018). 

Numerous helpful statistical features are developed and evaluated, some examples of which are the probability 

generating function, ordinary moments, central moment, moment generating function, cumulant generating function, 

and dispersion index (DisIx). The DWGW model, which is a specific discrete member of the DWG-G family based 

on the standard Weibull model, is studied graphically, theoretically, and numerically. "Increasing-constant," 

"decreasing-constant-increasing (U)," "constant," "U-constant," "decreasing," and "J-HRF" are the possible values for 

the hazard rate function of the DWGW model. The probability mass function of the DWGW model can take on a 

variety of useful shapes, including "asymmetric left skewed," "right skewed with wide peak," "right skewed," 

"bimodal," "symmetric," and "right skewed." Other shapes include "symmetric" and "bimodal". 

 

Traditional approaches to estimation were taken into consideration and utilized. The Bayesian estimating approach 

with the squared error loss function was another one of the methods that were taken into consideration. Both the Gibbs 

sampler and the Metropolis Hastings algorithm were used and put into practice. In order to evaluate Bayesian estimate 

in comparison to other methods, more conventional methods, simulations built with the Markov Chain Monte Carlo 

method are run. Despite this, the accuracy of any estimation method increases in parallel with the total number of 

observations as they are added. On the other hand, increasing the size of the sample is a straightforward way to enhance 

the accuracy of any and all estimation techniques. On the other hand, improving the performance of any and all ways 

of estimating results in improved performance when the sample size is increased. Nevertheless, increasing the size of 

the sample population results in an improvement in the performance of all estimating methods. The maximum 

likelihood estimation strategy is the best, with the lowest value of mean squared errors for any sample size; however, 

increasing the sample size also enhances the performance of other estimation strategies. The maximum likelihood 

estimation strategy is the best, with the least amount of mean squared errors for any sample size.   

 

In addition, six distinct collections of actual datasets were utilized in order to examine and contrast the Bayesian and 

traditional estimation strategies. For the purpose of illustrating how flexible the DWGW model is, six distinct 

collections of previously collected data were used. The DWGW distribution provided a more accurate fit than any of 

the other sixteen distributions that were in the running. 
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Informed Consent Statement: Not applicable. 

Dataset Availability Statement: The dataset can be provided upon requested. 
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